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Credits 

  Some of these slides were sourced and/or modified 
from Simon Prince, University College London 
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Subspace Models 

  Natural images have high dimensionality D 
  e.g., for an 1800 x 1200 colour image, D≅6.5 million.  

  There is typically insufficient training data to learn a 
probabilistic model in such a high-dimensional space. 

  Fortunately, natural images actually live in a much 
smaller subspace, or manifold, of this high-
dimensional space. 
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Subspace Models 

  For example, you will have to wait a long time 
before a sample of white noise looks like a natural 
image. 



Subspace Models 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

5 

Subspace Models 

  e.g., standard transformations (e.g., translations, 
rotations, scalings) of objects produce images 
populating a low-dimensional manifold embedded 
in this high-dimensional space 



Subspace Models 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

6 

Subspace Models 

  The goal of subspace methods is to discover the 
low-dimensional subspace in which the data lie and 
exploit the lower-dimensionality to allow efficient 
and detailed modeling. 



Subspace Models 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

7 

Subspace Models 

  We will mainly consider linear subspaces 
 A line if D=2 
 A line or a plane if D=3 
 A hyperplane of dimensionality [1,...,D-1] for higher D 

  But we will also consider some methods to deal with 
nonlinear manifolds. 
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Principal Component Analysis 

  PCA finds the linear subspace that 
 maximizes the explained variance 
 equivalently, minimizes the unexplained variance 

  PCA can be applied to any multidimensional dataset 
  (data do not have to be Gaussian) 
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Maximum Variance Formulation 

    Observations xn{ },n = 1,…N

   Observation xn  is a high-dimensional vector of dimension D

  Goal:  Project the data onto subspace of dimension M  <  D

  Consider a direction in the data space given by unit vector u1.

x2

x1

xn

�xn

u1

  The mean of the projected data is u1
tx.

 Now imagine projecting all of the data onto this unit vector.

   
Let x =

1
N

xn
i=1

N

∑  be the sample mean and S =
1
N

xn − x( ) xn − x( )t
i=1

N

∑  be the sample covariance

   
The variance of the projected data is 1

N
u1

txn −u1
tx( )2

i=1

N

∑ = u1
tSu1
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Maximum Variance Formulation 

x2

x1

xn

�xn

u1

  We want to select the unit vector u1 that maximizes the projected variance u1
tSu1

  To do this, we use  a Lagrange multiplier λ1 to maintain the constraint that u1 be a unit vector.

  Thus we seek to maximize u1
tSu1 + λ1 1−u1

tu1( )

   Setting the derivative with respect to u1 to 0, we have Su1 = λ1u1

  Thus u1 is an eigenvector of S.

  Left-multiplying by u1
t,  we see that the projected variance u1

tSu1 = λ1.

 λ1

 λ1
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Dimensionality Reduction 

  The next direction u2 can be chosen by maximizing projected 
variance in the D-1dimensional subspace orthogonal to u1. 

  Typically, most of the variance is captured in a relatively small 
linear subspace. 
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Computational Cost 

  Computing full eigenvector decomposition is O(D3). 
  If we only need the first M eigenvectors, the cost is 

O(MD2). 
  However, this could still be very expensive if D is 

large 

  e.g.,  For an 1800 ×1600 image and M = 100, O(650 million)
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Computational Cost 

  But the number of training images N is usually much smaller than D, and this 
leads to a trick:  

   Let X be the N × D  centred data matrix whose nth row is given by xn - x( )t .

   
Then the sample covariance matrix is S =

1
N

XtX.

   
and the eigenvector equation is 1

N
XtXui = λiui

   
Pre-multiplying both sides by X yields 1

N
XXt Xui( ) = λi Xui( )

  Now letting  vi = Xui,  we have

   
1
N

XXtvi = λivi

 D × D

 N × N

Much smaller eigenvector problem! 
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Computational Cost 

  To find the eigenvectors of S, we premultiply by Xt: 

   

1
N

XXtvi = λivi →
1
N

XtX
⎛
⎝⎜

⎞
⎠⎟

Xtvi( ) = λi Xtvi( )
 N × N

 S

   
and, normalized to unit length, the eigenvectors are ui =

1
Nλ i

Xtvi

  

Note that these N  eigenvectors live in the N-dimensional subspace 
spanned by the training images.
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Pre-Whitening 
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Compression 

Original M = 1 M = 10 M = 50 M = 250
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Modeling 

 x +αu1

Low-dimensional model of variation of registered objects such as faces 

 x +αu1

 x +αu1  x +αu1
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Probabilistic PCA 

  PCA applies to data of any kind. 

  But PCA can also be interpreted as the maximum likelihood 
solution to a probabilistic latent variable model based on a 
constrained form of the Gaussian distribution: 

   

Let z be an M-dimensional hidden variable with Gaussian prior
Let x be the D-dimensional observed variable with Gaussian conditional:
p(z) = N(z | 0,I)
p(x | z) = N(x | Wz + µ,σ 2I)

 D ×M
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Probabilistic PCA 

  One way to see this is to think of Probabilistic PCA as the limit 
of a mixture of Gaussians model, as the number of Gaussian 
components  ∞: 
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Marginalize 

over h 

Probabilistic PCA 

Pi
xe

l 2
 

Pixel 1 

Pi
xe

l 2
 

Pixel 1 

Consider putting the means of the Gaussians mixture components all on a 
line and forcing their diagonal covariances to be identical. 
What happens if we keep adding more and more Gaussians along this 
line? 
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Marginalize 

over h 

Probalistic PCA 

Pi
xe
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Pixel 1 

Pi
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Pixel 1 

Consider putting the means of the Gaussians mixture components all on a 
line and forcing their diagonal covariances to be identical. 
What happens if we keep adding more and more Gaussians along this 
line?  In the limit the hidden variable become continuous 
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Marginalize 

over h 

Probabilistic PCA 

Pi
xe

l 2
 

Pixel 1 

Pi
xe
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Pixel 1 

Now consider weighting the constituent Gaussians... 

Consider putting the means of the Gaussians mixture components all on a 
line and forcing their diagonal covariances to be identical. 
What happens if we keep adding more and more Gaussians along this 
line?  In the limit the hidden variable become continuous 
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Marginalize 

over h 

Probabilistic PCA 

Pi
xe

l 2
 

Pixel 1 

Pi
xe

l 2
 

Pixel 1 

Consider putting the means of the Gaussians mixture components all on a 
line and forcing their diagonal covariances to be identical. 
What happens if we keep adding more and more Gaussians along this 
line?  In the limit the hidden variable become continuous 
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Probabilistic PCA 

  PCA as the maximum likelihood solution to a probabilistic 
latent variable model based on a constrained form of the 
Gaussian distribution: 

   

Let z be an M-dimensional hidden variable with Gaussian prior
Let x be the D-dimensional observed variable with Gaussian conditional:
p(z) = N(z | 0,I)
p(x | z) = N(x | Wz + µ,σ 2I)

 D ×M
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Generative Model 

z

p(z)

�z

x2

x1

µ

p(x|�z)

} �z|w|

w
x2

x1

µ

p(x)

xn

zn

N

µ

σ2

W

   

p(z) = N(z | 0,I)
p(x | z) = N(x | Wz + µ,σ 2I)

Prior over latent variable Marginal density Subspace 

 x = Wz + µ + ε
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Marginal Distribution for Probabilistic PCA 

  The marginal distribution of the observed variable is 

   

p(x) = N(x | µ,C)
where
C = WWt +σ 2I
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Maximum Likelihood PCA 

  ML parameters can be found either by 
 determining M eigenvectors and eigenvalues directly 
 EM 

 µ = x

   

WML = UM LM − σ 2I( )1/2
R

where
UM  is a D ×M  matrix whose columns are given by any subset of size M  of the eigenvectors of S
LM  is an M ×M  diagonal matrix containing the M  corresponding eigenvalues λi

R  is an arbitrary rotation matrix

  
σML

2 =
1

D −M
λi

i=M +1

D

∑

 x = Wz + µ + ε
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Generative Model 

z

p(z)
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W

   

p(z) = N(z | 0,I)
p(x | z) = N(x | Wz + µ,Ψ)

Prior over latent variable Marginal density Subspace 

 x = Wz + µ + εΨ

 Ψ = Covariance of ε :  diagonal but not isotropic
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Factor Analysis Terminology 

  Columns of W are called factor loadings 

  Diagonal elements of Ψare called uniquenesses 

xn

zn

N

µ

σ2

W

 x = Wz + µ + εΨ
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Marginal Distribution for Factor Analysis 

  The marginal distribution of the observed variable is 

   

p(x) = N(x | µ,C)
where
C = WWt +Ψ
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Maximum Likelihood Parameter Estimation 

 µML = x

   However, no closed-form solution for WML.  Instead, can use EM to find WML  and ΨML.
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Learning Results: Two Factor Model 

 x = Wz + µ + ε

µ   w1

    where W = w1 w 2 …wD⎡⎣ ⎤⎦

  w 2

  µ + 2w1   µ + 2w 2

Ψ
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Learning results: Two Factor Model 

 x = Wz + µ + ε

µ   w1

    where W = w1 w 2 …wD⎡⎣ ⎤⎦

  w 2

  µ + 2w1   µ + 2w 2

Ψ
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Non-Linear Extensions 

  Mixture of factor analyzers (MOFA) 
  Two levels of the EM algorithm 
 One to learn each factor analyzer 
 One to learn the mixture model 
 Can describe quite complex manifold structures in high 

dimensions with only a limited number of parameters 

Pixel 1 

Pi
xe

l 2
 

   

p(x) = N(x | µk ,Ck )
k =1

K

∑
where
Ck = WkWk

t +Ψk
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Non-Linear Extensions 

  Kernel PCA 
  Idea:   

  Use a non-linear mappingφto an M-dimensional ‘feature space’ 
  Now perform PCA in this new space 

x1

x2

φ2

φ1
v1

φ
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Kernel PCA 

  
Covariance in feature space C =

1
N

φ xn( )φ xn( )t
n=1

N

∑

  Eigenvector expansion Cvi = λvi
  
→  1

N
φ xn( ) φ xn( )t vi{ }

n=1

N

∑ = λivi

  

Thus the eigenvector vi  is a linear combination of the transformed data vectors φ xn( ) :

vi = ainφ xn( )
n=1

N

∑

  
Substituting, we have 1

N
φ xn( )φ xn( )t aimφ xm( )

m=1

N

∑
n=1

N

∑ = λi ainφ xn( )
n=1

N

∑

  

Now multiplying both sides by  φ xl( )t ,  we obtain

1
N

φ xl( )t φ xn( ) aimφ xn( )t φ xm( )
m=1

N

∑
n=1

N

∑ = λi ainφ xl( )t φ xn( )
n=1

N

∑

  
Finally, defining the kernel function k xn,xm( ) = φ xn( )t φ xm( ), we can write

  

1
N

k xl ,xn( ) aimk xn,xm( )
m=1

N

∑
n=1

N

∑ = λi aink xl ,xn( )
n=1

N

∑

M-dimensional eigenvector    
Assume 0-mean data vectors: xn = 0

n=1

N

∑ .
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Kernel PCA 

  

1
N

k xl ,xn( ) aimk xn,xm( )
m=1

N

∑
n=1

N

∑ = λi aink xl ,xn( )
n=1

N

∑

   or, in matrix notation, K2ai = λiNKai →Kai = λiNai

   
Requiring that the eigenvectors v i  in feature space be unit vectors leads to the constraint ai

2
=

1
Nλi

.

    

In practice, for the projected data to have 0 mean, use K = K −1NK −K1N +1NK1N

where

1N =

1
N

…
1
N

  
1
N


1
N

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

 N

 N

N-dimensional eigenvector 
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Kernel PCA 


