SUBSPACE MODELS

Credits

\square Some of these slides were sourced and/or modified from Simon Prince, University College London

Subspace Models

\square Natural images have high dimensionality D

- e.g., for an 1800×1200 colour image, $D \cong 6.5$ million.
\square There is typically insufficient training data to learn a probabilistic model in such a high-dimensional space.
\square Fortunately, natural images actually live in a much smaller subspace, or manifold, of this highdimensional space.

Subspace Models

\square For example, you will have to wait a long time before a sample of white noise looks like a natural image.

Subspace Models

\square e.g., standard transformations (e.g., translations, rotations, scalings) of objects produce images populating a low-dimensional manifold embedded in this high-dimensional space

Subspace Models

\square The goal of subspace methods is to discover the low-dimensional subspace in which the data lie and exploit the lower-dimensionality to allow efficient and detailed modeling.

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Subspace Models

\square We will mainly consider linear subspaces
\square A line if $D=2$
\square A line or a plane if $D=3$
\square A hyperplane of dimensionality [$1, \ldots, D-1]$ for higher D
\square But we will also consider some methods to deal with nonlinear manifolds.

PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis

\square PCA finds the linear subspace that
\square maximizes the explained variance
\square equivalently, minimizes the unexplained variance
\square PCA can be applied to any multidimensional dataset

- (data do not have to be Gaussian)

Maximum Variance Formulation

Observations $\left\{\mathbf{x}_{\mathrm{n}}\right\}, n=1, \ldots N$
Observation \mathbf{x}_{n} is a high-dimensional vector of dimension D
Let $\overline{\mathbf{x}}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{\mathrm{n}}$ be the sample mean and $\mathbf{S}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}_{\mathrm{n}}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{\mathrm{n}}-\overline{\mathbf{x}}\right)^{t}$ be the sample covariance
Goal: Project the data onto subspace of dimension $M<D$

Consider a direction in the data space given by unit vector u_{1}.

Now imagine projecting all of the data onto this unit vector.

The mean of the projected data is $\mathbf{u}_{1}^{\mathrm{t}} \overline{\mathbf{x}}$.
The variance of the projected data is $\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{u}_{1}^{\mathrm{t}} \mathbf{x}_{\mathrm{n}}-\mathbf{u}_{1}^{\mathrm{t}} \overline{\mathbf{x}}\right)^{2}=\mathbf{u}_{\mathbf{1}}^{\mathrm{t}} \mathbf{S} \mathbf{u}_{1}$

Maximum Variance Formulation

Subspace Models

We want to select the unit vector u_{1} that maximizes the projected variance $u_{1}^{\mathrm{t}} S \mathrm{u}_{1}$

To do this, we use a Lagrange multiplier λ_{1} to maintain the constraint that \mathbf{u}_{1} be a unit vector.

Thus we seek to maximize $\mathbf{u}_{1}^{\mathrm{t}} \mathbf{S u}_{1}+\lambda_{1}\left(1-\mathbf{u}_{1}^{\mathrm{t}} \mathbf{u}_{1}\right)$

Setting the derivative with respect to u_{1} to 0 , we have $S u_{1}=\lambda_{1} u_{1}$

Thus \mathbf{u}_{1} is an eigenvector of \mathbf{S}.

Left-multiplying by $\mathbf{u}_{1}^{\mathrm{t}}$, we see that the projected variance $\mathbf{u}_{1}^{\mathrm{t}} \boldsymbol{S} \mathbf{u}_{1}=\lambda_{1}$.

Dimensionality Reduction

\square The next direction $\mathbf{U}_{\mathbf{2}}$ can be chosen by maximizing projected variance in the $D-1$ dimensional subspace orthogonal to \mathbf{u}_{1}.
\square Typically, most of the variance is captured in a relatively small linear subspace.

Computational Cost

\square Computing full eigenvector decomposition is $O\left(D^{3}\right)$.
\square If we only need the first M eigenvectors, the cost is $O\left(M D^{2}\right)$.
\square However, this could still be very expensive if D is large
e.g., For an 1800×1600 image and $M=100, O(650$ million $)$

Computational Cost

\square But the number of training images N is usually much smaller than D, and this leads to a trick:

Let \mathbf{X} be the $N \times D$ centred data matrix whose nth row is given by $\left(\mathbf{x}_{\mathrm{n}}-\overline{\mathbf{x}}\right)^{t}$.
Then the sample covariance matrix is $\mathbf{S}=\frac{1}{N} \mathbf{X}^{t} \mathbf{X}$.
and the eigenvector equation is $\frac{1}{N} \stackrel{D \times D}{\mathbf{X}^{t}} \mathbf{X}_{\mathbf{i}}=\lambda_{i} \mathbf{u}_{i}$
Pre-multiplying both sides by \mathbf{X} yields $\frac{1}{N} \mathbf{X} \mathbf{X}^{\mathbf{t}}\left(\mathbf{X u}_{\mathbf{i}}\right)=\lambda_{i}\left(\mathbf{X} \mathbf{u}_{\mathbf{i}}\right)$
Now letting $\mathbf{v}_{\mathbf{i}}=\mathbf{X} \mathbf{u}_{\mathbf{i}}$, we have
$\frac{1}{N} \stackrel{N \times N}{\stackrel{N}{X}}{ }^{t} \mathbf{v}_{\mathbf{i}}=\lambda_{i} \mathbf{v}_{\mathbf{i}}$

Computational Cost

\square To find the eigenvectors of \mathbf{S}, we premultiply by $\mathbf{X}^{\text {t: }}$
$\frac{1}{N} \stackrel{N \times N}{\mathbf{X X}^{t} \mathbf{v}_{\mathbf{i}}}=\lambda_{i} \mathbf{v}_{\mathbf{i}} \rightarrow \overbrace{\left(\frac{1}{N} \mathbf{X}^{\mathbf{t}} \mathbf{X}\right)}^{S}\left(\mathbf{X}^{\left.\mathbf{t} \mathbf{v}_{\mathbf{i}}\right)}=\lambda_{i}\left(\mathbf{X}^{\mathbf{t}} \mathbf{v}_{\mathbf{i}}\right)\right.$
and, normalized to unit length, the eigenvectors are $\mathbf{u}_{\mathbf{i}}=\frac{1}{\sqrt{N \lambda}} \mathbf{X}^{\mathbf{t}} \mathbf{v}_{\mathbf{i}}$
Note that these N eigenvectors live in the N-dimensional subspace spanned by the training images.

Pre-Whitening

Original Data

Normalized to 0 -mean and unit variance (z-scores)

Whitened

Compression

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Modeling

Low-dimensional model of variation of registered objects such as faces

$\overline{\mathrm{x}}+{ }_{1} q \mathbf{u}_{1}$

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

PROBABILISTIC PCA

Probabilistic PCA

\square PCA applies to data of any kind.
\square But PCA can also be interpreted as the maximum likelihood solution to a probabilistic latent variable model based on a constrained form of the Gaussian distribution:

Let \mathbf{z} be an M-dimensional hidden variable with Gaussian prior
Let \mathbf{x} be the D-dimensional observed variable with Gaussian conditional:
$p(\mathbf{z})=N(\mathbf{z} \mid 0, \mathbf{I})$
$p(\mathbf{x} \mid \mathbf{z})=N\left(\mathbf{x} \mid \mathbf{W} \mathbf{z}+\mu, \sigma^{2} \mathbf{I}\right)$

Probabilistic PCA

\square One way to see this is to think of Probabilistic PCA as the limit of a mixture of Gaussians model, as the number of Gaussian components $\rightarrow \infty$:

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Probabilistic PCA

Consider putting the means of the Gaussians mixture components all on a line and forcing their diagonal covariances to be identical.
What happens if we keep adding more and more Gaussians along this line?

J. Elder

Probalistic PCA

Consider putting the means of the Gaussians mixture components all on a line and forcing their diagonal covariances to be identical. What happens if we keep adding more and more Gaussians along this line? In the limit the hidden variable become continuous

Probabilistic PCA

Consider putting the means of the Gaussians mixture components all on a line and forcing their diagonal covariances to be identical. What happens if we keep adding more and more Gaussians along this line? In the limit the hidden variable become continuous

Probabilistic PCA

Consider putting the means of the Gaussians mixture components all on a line and forcing their diagonal covariances to be identical. What happens if we keep adding more and more Gaussians along this line? In the limit the hidden variable become continuous

Probabilistic PCA

\square PCA as the maximum likelihood solution to a probabilistic latent variable model based on a constrained form of the Gaussian distribution:

Let \mathbf{z} be an M-dimensional hidden variable with Gaussian prior
Let \mathbf{x} be the D-dimensional observed variable with Gaussian conditional:
$p(\mathbf{z})=N(\mathbf{z} \mid 0, \mathbf{I})$
$p(\mathbf{x} \mid \mathbf{z})=N\left(\mathbf{x} \mid \mathbf{W} \mathbf{z}+\mu, \sigma^{2} \mathbf{I}\right)$
$\uparrow_{D \times M}$

Generative Model

Marginal Distribution for Probabilistic PCA

\square The marginal distribution of the observed variable is
$p(x)=N(\mathbf{x} \mid \mu, \mathbf{C})$
where
$\mathbf{C}=\mathbf{W W}^{t}+\sigma^{2} \mathbf{I}$

Maximum Likelihood PCA

$\mu=\overline{\mathbf{x}}$
$\sigma_{M L}^{2}=\frac{1}{D-M} \sum_{i=M+1}^{D} \lambda_{i}$
$\mathbf{W}_{M L}=\mathbf{U}_{M}\left(\mathbf{L}_{M}-\sigma^{2} \mathbf{I}\right)^{1 / 2} \mathbf{R}$
where
\mathbf{U}_{M} is a $D \times M$ matrix whose columns are given by any subset of size M of the eigenvectors of \mathbf{S}
\mathbf{L}_{M} is an $M \times M$ diagonal matrix containing the M corresponding eigenvalues λ_{i}
\mathbf{R} is an arbitrary rotation matrix
ML parameters can be found either by
\square determining M eigenvectors and eigenvalues directly
$\square \mathrm{EM} \quad \mathbf{x}=\mathbf{W z}+\mu+\varepsilon$

FACTOR ANALYSIS

Generative Model

Factor Analysis Terminology

\square Columns of W are called factor loadings
\square Diagonal elements of Ψ are called uniquenesses

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Marginal Distribution for Factor Analysis

\square The marginal distribution of the observed variable is
$p(x)=N(\mathbf{x} \mid \mu, \mathbf{C})$
where
$\mathbf{C}=\mathbf{W W}^{t}+\Psi$

Maximum Likelihood Parameter Estimation

$$
\mu_{M L}=\bar{x}
$$

However, no closed-form solution for $\mathbf{W}_{M L}$. Instead, can use EM to find $\mathbf{W}_{M L}$ and $\Psi_{M L}$.

Learning Results: Two Factor Model

Subspace Models

$\mathbf{X}=\mathbf{W} \mathbf{z}+\mu+\boldsymbol{\varepsilon}$ where $\mathbf{W}=\left[\mathbf{w}_{1} \mathbf{w}_{2} \ldots \mathbf{w}_{D}\right]$

μ

\mathbf{W}_{1}

$$
\mu+2 \mathbf{w}_{1} \quad \mu+2 \mathbf{w}_{2}
$$

Learning results: Two Factor Model

Subspace Models

$\mathbf{X}=\mathbf{W} \mathbf{z}+\mu+\boldsymbol{\varepsilon}$ where $\mathbf{W}=\left[\mathbf{w}_{1} \mathbf{w}_{2} \ldots \mathbf{w}_{D}\right]$

μ

\mathbf{W}_{1}

$$
\mu+2 \mathbf{w}_{1} \quad \mu+2 \mathbf{w}_{2}
$$

Ψ

Non-Linear Extensions

Mixture of factor analyzers (MOFA)
\square Two levels of the EM algorithm
\square One to learn each factor analyzer

- One to learn the mixture model
\square Can describe quite complex manifold structures in high dimensions with only a limited number of parameters

$$
p(x)=\sum_{k=1}^{K} N\left(\mathbf{x} \mid \mu_{k}, \mathbf{C}_{k}\right)
$$

where

$$
\mathbf{C}_{k}=\mathbf{W}_{k} \mathbf{W}_{k}^{t}+\Psi_{k}
$$

Pixel 1

Non-Linear Extensions

\square Kernel PCA

- Idea:
- Use a non-linear mapping ϕ to an M-dimensional 'feature space'
- Now perform PCA in this new space

Kernel PCA

Assume 0-mean data vectors: $\sum_{n=1}^{N} \mathbf{x}_{n}=0$.
M-dimensional eigenvector
Covariance in feature space $C=\frac{1}{N} \sum_{n=1}^{N} \phi\left(x_{n}\right) \phi\left(x_{n}\right)^{t}$
Eigenvector expansion $C v_{i}=\lambda v_{i}$

$$
] \rightarrow \frac{1}{N} \sum_{n=1}^{N} \phi\left(x_{n}\right)\left\{\phi\left(x_{n}\right)^{t} v_{i}\right\}=\lambda_{i} v_{i}
$$

Thus the eigenvector v_{i} is a linear combination of the transformed data vectors $\phi\left(x_{n}\right)$:
$v_{i}=\sum_{n=1}^{N} a_{i n} \phi\left(x_{n}\right)$
Substituting, we have $\frac{1}{N} \sum_{n=1}^{N} \phi\left(x_{n}\right) \phi\left(x_{n}\right)^{t} \sum_{m=1}^{N} a_{i m} \phi\left(x_{m}\right)=\lambda \sum_{n=1}^{N} a_{i n} \phi\left(x_{n}\right)$
Now multiplying both sides by $\phi\left(x_{l}\right)^{t}$, we obtain
$\frac{1}{N} \sum_{n=1}^{N} \phi\left(x_{l}\right)^{t} \phi\left(x_{n}\right) \sum_{m=1}^{N} a_{i m} \phi\left(x_{n}\right)^{t} \phi\left(x_{m}\right)=\lambda_{i} \sum_{n=1}^{N} a_{i n} \phi\left(x_{l}\right)^{t} \phi\left(x_{n}\right)$
Finally, defining the kernel function $\mathrm{k}\left(\mathrm{x}_{n}, x_{m}\right)=\phi\left(x_{n}\right)^{t} \phi\left(x_{m}\right)$, we can write $\frac{1}{N} \sum_{n=1}^{N} k\left(x_{1}, x_{n}\right) \sum_{m=1}^{N} a_{i m} k\left(x_{n}, x_{m}\right)=\lambda_{i} \sum_{n=1}^{N} a_{i n} k\left(x_{1}, x_{n}\right)$

Kernel PCA

$\frac{1}{N} \sum_{n=1}^{N} k\left(x_{l}, x_{n}\right) \sum_{m=1}^{N} a_{i m} k\left(x_{n}, x_{m}\right)=\lambda_{i} \sum_{n=1}^{N} a_{i n} k\left(x_{l}, x_{n}\right)$
N -dimensional eigenvector
or, in matrix notation, $\mathbf{K}^{2} \mathbf{a}_{i}=\lambda_{i} N \mathbf{K a}_{i} \rightarrow \mathbf{K a}_{i}=\lambda_{i} N \mathbf{a}_{i}$

Requiring that the eigenvectors \mathbf{v}_{i} in feature space be unit vectors leads to the constraint $\left|\mathbf{a}_{i}\right|^{2}=\frac{1}{N \lambda_{i}}$.

In practice, for the projected data to have 0 mean, use $\tilde{K}=K-\mathbf{1}_{N} K-K 1_{N}+\mathbf{1}_{N} K 1_{N}$ where

$$
\mathbf{1}_{N}=\underset{N}{\left(\begin{array}{ccc}
\frac{1}{N} & \cdots & \frac{1}{N} \\
\vdots & \ddots & \vdots \\
\frac{1}{N} & \cdots & \frac{1}{N}
\end{array}\right)} \downarrow N N
$$

Kernel PCA

Subspace Models

Eigenvalue $=21.72$

Eigenvalue=3.66

Eigenvalue $=21.65$

Eigenvalue $=3.09$

Eigenvalue=4.11

Eigenvalue=2.60

Eigenvalue=3.93

Eigenvalue=2.53

